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Abstract In the strategic design of a distribution system, the right number of stock
points for the various products is an important question. In the past decade, a strong
trend in the consumer goods industry led to centralizing the inventory in a single
echelon consisting of a few parallel warehouses or even a single distribution center for
a Europe-wide distribution system. Centralizing inventory is justified by the reduction
in total stock which mostly overcompensates the increasing transportation cost. The
effect of centralization is usually described by the “Square Root Law”, stating that the
total stock increases with the square root of the number of stock points. However, in
the usual case where the warehouses are replenished in full truck loads and where a
given fill rate has to be satisfied, the Square Root Law is not valid. This paper explores
that case. It establishes functional relationships between the demand to be served by a
warehouse and the necessary safety and cycle stock for various demand settings and
control policies, using an approximation of the normal loss function and its inverse.
As a consequence, the impact of the number of parallel warehouses on the total stock
can be derived. The results can be used as tools in network design models.

Keywords Consumer goods distribution · Full truck load replenishment · Fill rate
constraint · Normal loss function approximation

1 Introduction

The design of a distribution system usually starts from given plant locations, cus-
tomer locations or areas with a certain demand, and service requirements concerning
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time and reliability of the deliveries. The decisions to be taken are the locations of
warehouses and transshipment points, and the distribution paths from the plants to
the customers (Chopra and Meindl 2007, Ch. 4.3; Fleischmann 1993). They define
the distribution network which consists of plants, warehouses, transshipment points,
customers. The objective is to minimize the cost of installing and maintaining the
warehouses and transshipment points, including the information system, the cost of
operations (transport, handling, and dispatching), and the cost of inventories.

Most manufacturers outsource the distribution task to a logistics service provider
(LSP) who is then responsible for all operations. He usually owns the warehouses,
transshipment locations, and the information/communication system, but not the
inventory. The main question remaining for the manufacturer is then as to where
to keep stocks in the network of the LSP, i.e. the decisions on the number of inventory
echelons and the number and locations of stock points. In the past years, a strong trend
in the consumer goods industry led to distribution systems with a single inventory ech-
elon consisting of a single distribution center (DC) or a few parallel DCs. This is even
true for Europe-wide distribution systems where the major part of the customers can
be reached from aDCwithin a 48-h or 72-h lead time through a transportation network
without further stock points. This so-called “Euro Logistics” concept is practiced or
being implemented for instance by Bosch Power Tools with the International Distrib-
ution Center (IDC) in Worms (press release of July 24, 2007), by Gardena, a producer
of garden tools, with a European Distribution Center in Ulm (Hartel 2009, Ch. 7.2.3),
by the pencil producer Staedtler with the European Logistics Center in Nuremberg
(press release of March 27, 2006), and by Viking, a producer of mowing machines,
with a European Distribution center in Strasbourg (press release of March 1, 2011).

The motivation for centralizing the inventories within a distribution system is to
reduce the cost of operating the warehouses and to reduce the overall inventory. On
the other hand, reducing the number of warehouses increases the distances from the
warehouses to the customers and hence the most expensive part of the transportation,
the delivery of small customer orders (see e.g. Chopra and Meindl 2007, Ch. 4.2;
Croxton and Zinn 2005). In the Euro Logistics concept, this effect is attenuated by
bundling the deliveries within the LSP network. The distances for the replenishment
from the suppliers to thewarehouses decrease only slightlywith the decreasing number
of warehouses. Only if the inventory is centralized at a single location near to the
main source of supply, for instance a factory, the replenishment cost can be cut down
considerably.

The impact of the warehouse locations on the transportation costs can be easily
expressed in a network design model, using the distances between the relevant loca-
tions and appropriate transport tariffs. The same is true for the warehouse operation
costs. The impact on the inventory level, however, is less obvious and is, therefore,
often disregarded or estimated only roughly. Shapiro and Wagner (2009) state a defi-
ciency of inventory deployment decisions in network optimization models due to the
incompatibility of mathematical programming models and probabilistic models for
inventory planning.

This paper addresses the functional relationship between the average inventory
level at a certain stock point and its throughput, i.e. the demand which is served
from it, and, consequently, the relationship between the number of warehouses and
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the overall inventory. This question is not new, but has been investigated for about
40 years. Main results are summarized in the next section. Most authors differentiate
between safety stock and cycle stock, the latter being caused by the replenishment
orders or, equivalently, the transport lot sizes. In addition, the warehouse locations
impact the average transit inventories, which depend on the travel times, hence on
the travel distances, but not on the transport lot sizes. Therefore, costs of the transit
inventories can be easily modeled, for every link of the network, as linear functions
of the flow in the link (Fleischmann et al. 2015). That is why transit inventories will
not be considered in the following.

This paper considers only a single echelon within a distribution system, which is
typical for the most downstream stock-keeping echelon of the network of a consumer
goods manufacturer. The interdependence with upstream inventories, for instance in
a factory warehouse, is disregarded, in particular the effect of central control. Down-
stream in the supply chain, there may be additional retail warehouses. But usually the
retailer operates with a very low stock level or with stockless transshipment points
and requests a very high service level of the manufacturer, although from a total
supply chain perspective the highest service level is required at the retail echelon.
Multi-echelon inventory systems with local and central control are discussed by Tem-
pelmeier (2011, Ch. D) and in the survey papers of Diks et al. (1996) and van Houtum
et al. (1996).

The most popular model of the relationship between the number of warehouses
and inventories is the Square Root Law. It states that the total inventory in N parallel
warehouses is proportional to the square root of N . It appears in many textbooks (e.g.
Bretzke 2010; Chopra and Meindl 2007, Ch. 11.4; Christopher 2005, p. 215; Tem-
pelmeier 2011, Ch. C. 6) and is employed in many articles on the design of distribution
systems (e.g. Croxton and Zinn 2005; Erlebacher and Meller 2000; Miranda and Gar-
rido 2004; Ozsen et al. 2008; Shen 2007; Snyder et al. 2007), for the safety stock or
for the total stock. Literature on the justification and limitations of the Square Root
Law will be discussed in the next section.

However, a crucial limitation of the Square Root Law is the assumption, that the
replenishment takes place in economic order quantities (EOQ), which is required not
only for the cycle stock, but also for the safety stock in case of a fill rate constraint.
However, the use of the EOQ is not questioned in literature. According to the author’s
experience with distribution network design in the consumer goods industry (Fleis-
chmann 1993; Fleischmann et al. 2015), the EOQ assumption is absolutely unrealistic,
when the transport is done by trucks, as usual in a national or continental distribution
system. The reason is that the EOQ is typically much larger than the capacity of a
truck. That is why transports of consumer goods between factories and warehouses
nearly always run in the full truck load (FTL) mode.

This can be easily understood from the following typical data: The capacity of a
truck with trailer or a semitrailer is usually restricted by the volume of 32 up to 34
pallets. The net weight of consumer goods per pallet is mostly less than 0.5 tons so
that the capacity, expressed in weight, is up to 17 tons. The comparison between the
EOQ and FTL is based on realistic ranges of the following parameters:
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Q: truck capacity, Q ≤ 17 tons
v: value of the good in e/kg, v ≤ 100
i : interest rate, i = 0.06
F : cost per trip, F ≥ 500 e for a long-distance trip
t : demand per week in number of FTLs, t ≥ 2.

The EOQ is larger than Q if, for the FTL replenishment, the transport cost exceeds the
holding cost per week, i.e. if t F ≥ 1

2 · 17,000 · v · i
52 ≈ 9.8 v or v ≤ 0.1 t F , which is

satisfied for the above typical ranges of the parameters. Therefore, theEOQassumption
is not realistic. The replenishment quantities are FTLs. Exceptions may occur for very
small warehouses, where an FTL would cause undesired long replenishment cycles.
But in this case, the less than truck load (LTL) lot sizes are even more away from the
EOQ.

This paper makes the following contributions: It investigates the relationship
between the number of warehouses and the total inventory for the first time for the
realistic situation of replenishment by trucks and a fill rate constraint. It emphasizes
the limitation of the Square Root Law by the EOQ assumption, which has been disre-
garded in literature so far. It analyzes the total inventory as a function of the number
of warehouses for various demand distributions (normal and Gamma distribution) and
inventory control policies (continuous and periodic review) and explores the effect of
demand correlation, using an approximation of the normal loss integral and its inverse.
On the whole, it provides novel functional relationships between the inventory level
at a stock point and its throughput, which can be used as modules in network design.

The remainder of the paper is organized as follows: The next section defines the
problem setting and discusses the justifications and limitations of the SquareRoot Law.
In Sect. 3 a basic model with normally distributed demand and continuous review is
used for determining the stock functions. Three realistic data sets are presented which
are used throughout the paper. Section 4 analyzes the effect of demand correlation.
Sections 5 and 6 consider the case of Gamma distributed demand and a periodic review
model. Section 7 draws the conclusions. The Appendix presents an approximation of
the normal loss integral and proves some properties of it which are used in the paper
for the analysis of the stock functions.

2 The square root law

The following situation is considered (cf. Fig. 1):

1. There are N parallel stock points supplying customers with a given demand of a
single product.

2. The total demand per day is stochastic with expectation D and standard deviation
σD and does not depend on N .

3. There is a fixed allocation of the customers to the stock points so that the expected
daily demand per stock point is d = D

N .
4. The total demand is composed of many small uncorrelated customer demand so

that the daily demand per stock point has the standard deviation σ0
√
d where

σ0 = σD√
D
.
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Fig. 1 Distribution structures considered

5. The fixed lead time for replenishing the stock points is L days for all stock points
and independent of N .

6. The replenishment of the stock points is done by trucks in FTL of the size Q, if
Q does not exceed the average demand of a given maximal cycle time tmax (for
instance 1 week), otherwise in the LTL quantity d tmax.

7. Every stock point must satisfy a service level constraint in form of a fill rate β

which is independent of N . Unsatisfied demand is backordered.

The critical Assumption 4 about independent demand will be relaxed within Sect. 4.
Assumption 7 is criticized by Tempelmeier (2011, p. 159) because the distances from
the warehouses to the customers increase with decreasing N and, therefore, the lead
time toward the customers is likely to increase as well. Therefore, a higher service
level at the warehouse is required to keep a constant service level for the customers.
But in a modern Euro Logistics system, as explained above, the lead time for the
customers is nearly independent of the transport time to the customers, which is only
a part of the lead time.

Given the probability distribution of the demand, a replenishment strategy, and a
service level constraint, we define the following stock functions:

For a single warehouse with demand rate d:

S(d) necessary safety stock
C(d) average cycle stock

and for the distribution system with N stock points:

ST(N ) total safety stock
CT(N ) total average cycle stock.

Due to d = D
N we have

ST(N ) = N · S
(
D

N

)
and CT(N ) = N · C

(
D

N

)
. (1)

In the following, the structure of the functions S(d), C(d), ST(N ), and CT(N ) will be
analyzed for various situations. A wide-spread assumption about this function is the
Square Root Law, which states

123



www.manaraa.com

904 B. Fleischmann

ST(N ) = A
√
N with some constant A

or, equivalently,

S(d) = A′√d with a constant A′ = A√
D

.

The following justifications of the Square Root law in literature are often referred to.
LetΦ andϕ denote the cdf and the density function of the standard normal distribution.

The multilocation newsboy problem Eppen (1979) considers N warehouses with nor-
mally distributed demand in a single period. The special case of uncorrelated equal
demands satisfies the Assumptions 1 to 3 above. The optimal safety stock in a newsboy
model is k σ with a safety factor

k = Φ−1
(

p

h + p

)
,

where h is the unit holding cost, p the penalty cost and σ = σ0
√
d the standard

deviation of the demand. Hence

S(d) = k σ0
√
d (2)

satisfies the Square Root Law. In addition, Eppen (1979) shows that this is also true for
the total holding and penalty cost and he derives cost functions for the more general
case of correlated demands with given covariances.

However, this model is not compatible with the problem setting: First, the single-
period model does not include warehouse replenishments and cycle stock. Second, the
fill rate β is not fixed: With the normal loss integral

R(k) =
∞∫
k

(x − k) ϕ(x) dx (3)

the fill rate β = 1 − R(k) σ
d = 1 − R(k) σ0√

d
increases with increasing d.

α service level constraint and fixed safety factor In case of a constant safety factor
k, the Square Root Law for the safety stock is simply based on the “Risk Pooling
Effect” for uncorrelated demands, i.e. the fact that the standard deviation is pro-
portional to

√
d and the coefficient of variation (CV) is proportional to 1√

d
and to√

N .
Stulman (1987) modifies Eppen’s model by introducing an α service-level con-

straint. Then the safety factor k in (2) becomes k = Φ−1(α). As it is again independent
of d, the Square Root Law is satisfied. This remains true in amulti-periodmodel with a
continuous-review (r, q) policy (Chopra and Meindl 2007, Ch. 11.4). There, σ refers
to the lead time demand, and the safety stock is S(d) = k σ0

√
L d. Many authors
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justify the Square Root Law by a safety factor, which is assumed to be constant (e.g.
Croxton and Zinn 2005; Evers and Beier 1993, 1998; Evers 1995; Maister 1976;
Schwarz 1981).

EOQ If the replenishment quantity q in a (r, q) policy is determined as an economic
order quantity (EOQ), then q = z

√
d with some constant z depending on the cost

factors. In this case the Square Root Law holds also for the cycle stock C(d) = 1
2q

and consequently for CT(N ). This relationship is widely used in literature. Evers
(1995) compares the EOQ with an order up to policy where q is a fixed multiple
of the lead time demand. In this case, the total cycle stock is constant, independent
of the centralization. This accords with the LTL policy considered in this paper (see
Assumption 6).

β service level constraint The fill rate or β service level, which is more significant for
the customer service than the α service level, is a popular service measure in inventory
control research and in practice. For a continuous-review (r, q) policy and a given fill
rate β, the safety factor is

k = R−1
(

q

σ0
√
L d

(1 − β)

)
. (4)

This formula holds, if the expected shortage immediately after replenishment can be
neglected, as it is the case for a high fill rate β (Tempelmeier 2011, Ch. C. 1.1). Thus,
the safety factor k depends on d and on q. The only situation where k is constant
is when q√

d
is constant, as is the case for the EOQ. This relevance of the EOQ for

the Square Root Law of the safety stock has not been considered in literature so far.
Unfortunately, as explained in the Introduction, the EOQ is not appropriate for the
warehouse replenishment by trucks. While the β service level is often considered in
multi-echelon models (see Diks et al. 1996), it has not been used in models of cen-
tralization of inventory. The only exception, to our knowledge, is Tempelmeier (2011,
Ch. C. 6), who also stresses the necessity of a constant safety factor for the Square
Root Law. But he considers the safety factor as a function of β only, disregarding its
dependence on d and q.

Correlated demand Obviously, the SquareRoot Lawgets lost if the demand at different
locations is correlated. Models with explicit covariances (Eppen 1979; Schwarz 1981)
can only be used for comparing a decentralized system that has N fixed stock points
with a centralized systemwith N = 1. Nevertheless, Evers andBeier (1993, 1998) and
Evers (1995) consider the effect of consolidating N stock pointswith given covariances
into M new stock points (1 ≤ M < N ). But they assume tacitly that there is perfect
correlation within the demand of each of the original stock points i with demand Di

and variance Vi so that any partial demand of Di , say W Di with 0 < W < 1, has the
variance W 2 Vi . Thus, the original N stock points hold an artificial special position,
which explains the strange result, that in case of no correlation between the Di the
safety stock is always reduced by the factor 1√

N
, independent of M . This effect is not

due to centralization, but due to the reallocation of demand, 1
M of the demand of every

original location to each of the new locations. This would even work for M = N .
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Another way to generalize the Square Root Law is suggested by Ballou (2005) and by
Shapiro and Wagner (2009) who construct stock functions of the form S(d) = η dθ

from empirical data, where the exponent θ ≥ 0.5 can take demand correlation into
account. In a similar way, correlated demand will be considered in Sect. 4 using the
model σ = η dθ for the standard deviation σ .

3 A continuous review model

In this section, stock functions are derived for normal distribution of the demand, a
continuous-review (r, q) policy, and a given fill rate β, based on the assumptions in
Sect. 2. For the ease ofwritingweuse the notationsσL = σ0

√
L , andσLD = σ0

√
L D.

As the demand is composed of many very small units, an “undershoot” under the
reorder point r can be neglected. When a variation of the demand rate d is considered,
it is important to know how the replenishment quantity q varies with d. As explained
before, the EOQ is not adequate for that purpose. Instead, Assumption 6 leads to the
following relationship:

q =
{
Q, if d ≥ Q

tmax
(FTL case)

d tmax, if d <
Q

tmax
(LTL case)

(5)

Using (4) and C(d) = 1
2q we get the stock of a single warehouse as a function of d:

FTL case

S(d) = R−1
(

Q

σL
√
d

(1 − β)

)
σL

√
d and C(d) = 1

2
Q (6)

LTL case

S(d) = R−1

(√
d tmax

σL
(1 − β)

)
σL

√
d and C(d) = 1

2
d tmax. (7)

The total stock for N warehouses is then, using (1):

FTL case

ST(N ) = R−1

(
Q

√
N

σLD
(1 − β)

)
σLD

√
N and CT(N ) = 1

2
NQ (8)

LTL case

ST(N ) = R−1
(

D tmax

σLD
√
N

(1 − β)

)
σLD

√
N and CT(N ) = 1

2
D tmax. (9)

The above safety stock functions are valid for the expected average net inventory
I = I+ − I− with the expected average stock on hand I+ and the expected average
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Fig. 2 Safety stock and cycle stock for continuous review and normally distributed demand. Common
data: Q = 34 [pallets], L = 2, tmax = 5 [days]

shortage I−. I− can be approximated by 1
2 (I

−
0 + I−

1 ) with I−
0 , I−

1 being the expected
shortage at the beginning and at the end of a replenishment cycle, respectively. As
the safety stock is determined such that I−

1 − I−
0 = (1 − β)q , it follows I− ≈

1
2 (1−β)q+ I−

0 , where I−
0 is small compared to I− and can be neglected inmost cases.

Thus, for given data q and β, the difference between the average net inventory and the
stock on hand is nearly constant and, for a high service levelβ, small compared to S(d).
In the following, in accordance with most textbooks on inventory management, the
correction of the safety stock by I− is forgone and all results represent net inventories,
giving a clearer view of the structure of the stock functions.

Examples Figure 2 shows, for three realistic data settings, the safety stock and cycle
stock functions for a single warehouse and in total. The quantity unit is a pallet, as
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Table 1 Maximum of ST(N ) for FTL

Data set c N0 max ST(N ) Indifference area

1 0.024 48 117 [19, 96] (outside FTL area)

2 0.0425 15 95 [6, 30]
3 0.030 31 188 [12, 62] (FTL up to N = 14)

usual in the distribution business. The full truck load of Q = 34 pallets corresponds
to the capacity of a truck with trailer or a semitrailer. The replenishment lead time is
L = 2 days, as is typical in a national or European distribution system. The maximal
cycle time is tmax = 5 days, i.e. any warehouse must be replenished at least once a
week. The number of warehouses is varied in the range N = 1, . . . , 20. The data sets
differ in the following parameters:

The service level is β = 98 % (Data Set 1) or β = 95 % (Data Sets 2 and 3).
The total demand is D = 100 or D = 200 pallets per day, that is about 3 or 6 full

loads per day, respectively. In the first case (Data Sets 1 and 3), FTL replenishment is
possible up to N = 14 warehouses. For N = 15, the load is q = 33.3 pallets, it goes
down to q = 25 pallets for N = 20. In the second case (Data Set 2), only FTL occurs.

The standard deviation per pallet and day is σ0 = 2 or 4. In the first case (Data Sets
1 and 2), the CV of the lead time demand of 200 is 0.14 (such as for D = 100, N = 1),
but increases to 0.63 for N = 20, which is already critical for the assumption of normal
distribution. In the second case (Data Set 3), the CV of the lead time demand is 0.28
for N = 1, but 1.26 for N = 20, which strongly contradicts the normal distribution.
Nevertheless, in this section and in Sect. 6, the stock functions are based on this model,
which permits an easy explanation of the observed stock curves. In Sect. 5, the more
realistic Gamma distribution is used instead, but it will turn out that this does not
change the general structure of the stock functions.

Surprisingly, in the FTL case, the total safety stock ST(N ) increases rather slowly
andmay even decrease as for Data Set 2, as Fig. 2 and the following numerical analysis
show:

Using the approximations and properties A.2 and A.3 in the Appendix, ST(N ) ≈
H(c

√
N )

√
NσLD with c = Q(1−β)

σLD
attains the maximum at N0 ≈ 1

(6c)2
with the

value ST(N0) ≈ σLD
10c .Within the indifference area [0.4N0, 2N0], ST(N ) ≥ 0.9ST(N0)

holds. Table 1 specifies the results, which accord well with the safety stock functions
in Fig. 2. The maximum itself can only be observed for ST(N ) in Data Set 2, whereas
the other cases show the slowly increasing safety stock left to the maximum.

This trend of ST(N ) contradicts the Square Root Law and leads to the following
question: Why is there not a stronger risk pooling effect? This can be explained in
a simple example: Suppose, the total demand per week is 5 Q. Thus, if N = 5,
every warehouse gets one replenishment per week. In case of centralization (N = 1),
the single warehouse receives one truck every day. It is well known that for a (r, q)
policy, reducing the cycle time requires a higher safety stock. This effect partly or
totally compensates the risk pooling effect. If all five trucks were sent together on the
same day once a week, risk pooling would become effective, but this would cause
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unreasonable and unnecessary cycle stock. Nevertheless, centralization yields a big
advantage, namely the reduction of the cycle stock, not of the safety stock. In our
example, the cycle stock would decrease from 5

2 Q to 1
2 Q.

The functions S(d) for FTL and ST(N ) for LTL are of the form h2(N ) (see Appen-
dix A.4) and, therefore, increase stronger than

√
N and weaker than linearly, but in

all cases nearly linearly. Thus, in the LTL case, the role of the two types of stock
is exchanged: The cycle stock remains constant, whereas the safety stock increases
monotonically and stronger than

√
N .

4 Correlated demand

The assumption that the demands at the different stock points are independent
may be unrealistic in many cases. In particular, the local demands in a distribu-
tion system may be influenced by global factors entailing positive correlation. In this
section, we analyze the effect of demand correlation on the centralization of invento-
ries.

As the focus of this paper is the general relationship between the number of stock
points and the total inventory, we do not consider explicit covariances. Instead the
following model is used which generalizes the variance V of the demand as a function
of the expected value d as V (d) = V0 d2θ , where the exponent θ = 0.5 is valid for
independent demand, θ > 0.5 or θ < 0.5 for positive or negative correlation, respec-
tively, and V0 is a constant. A relationship between θ and the correlation coefficient
ρ can be established as follows: Let X1 and X2 be the demand of two stock points,
both with expectation d and variance σ 2, and with the correlation coefficient ρ. Then
the variance of X1 + X2 must equal V (2d) or 2σ 2(1 + ρ) = 22θ σ 2, which leads to
θ = 1

2 (1+ ln(1+ρ)
ln 2 ).We assume−1 < ρ < 1, i.e. the trivial cases of perfect correlation

are not considered.
In order to show the effect of correlation for the Data Sets 1 to 3 compared with the

case of independent demand, V0 is fixed to the variance of the lead time demand for
N = 20, the highest number of stock points considered, when there is no correlation:

V0 = σ 2
0 L D

20
,

so that the lead-time demand of each of N stock points with daily demand D
N has the

standard deviation

σ = √
V0

(
20

N

)θ

= σLDN
−θ with σLD = √

V0 20
θ .

Then, the safety stock ST(20) is equal for all ρ, including ρ = 0, but ST(N ) depends
on ρ for N < 20. Note that this variable transformation does not affect any results
for ρ = 0 or correspondingly θ = 0.5. ρ can be interpreted as the correlation either
between the lead-time demands per stock point or between their daily demands if
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Table 2 Maximum of ST(N )

for various correlation
coefficients ρ (Data Set 2)

ρ θ σLD N0 ST(N0)

−0.1 0.4240 31.86 24.5 94.6

0 0.5 40 15.5 94.9

0.1 0.5688 49.15 10.3 100.6

0.3 0.6893 70.52 4.4 123.0

0.5 0.7925 96.07 1.3 163.4

there is no correlation between different days. The cycle stock is not affected by the
correlation.

Now the safety stock functions (8) and (9) can be generalized:

for the FTL case: ST(N ) = R−1
(
Q N θ

σLD
(1 − β)

)
σLDN

1−θ and

for the LTL case: ST(N ) = R−1
(

D tmax

σLDN 1−θ
(1 − β)

)
σLDN

1−θ .

In this comparison, we also include the Square Root Law (SRL) for the safety stock
and for the total stock, using the same variable transformation:

for the SRL: ST(N ) =
√

N

20
ST(20) and

ST(N ) + CT(N ) =
√

N

20
(ST(20) + CT(20)).

Figure 3 shows the safety stock ST(N ) and the total stock ST(N ) + CT(N ) for var-
ious ρ ≥ 0, ρ = −0.3, and for the SRL. It is well known that the risk pooling
effect is weakened by positive correlation and strengthened by negative correlation.
Thus, the necessary safety stock after centralization increases with increasing ρ. As
explained in the previous section, the risk pooling effect is also diminished, even for
ρ = 0, by the fact that increasing demand entails shorter replenishment cycle times.
Therefore, in the FTL case, ST(N ) turned out not to be monotonic, but to attain a
maximum. This remains true in case of correlation, as shown in the Appendix A.2,
using the approximation ST(N ) ≈ H(c N θ )N 1−θσLD with c = Q

σLD
(1 − β). The

maximum, which can be determined analytically, is larger and attained at smaller N
if ρ increases.

Table 2 specifies these values, according with Fig. 3, for Data Set 2 as an example.
For ρ > 0.54 the maximum is attained for N < 1 so that ST(N ) decreases monotoni-
cally in the relevant area 1 ≤ N ≤ 20. For ρ > 0.35, ST(N ) is not concave in this area,
but exhibits an inflection point, for instance at N ≈ 6 for ρ = 0.5. For ρ < −0.06
the maximum is attained for N > 20, so that ST(N ) is monotonically increasing and
concave, as shown in the Appendix A.2.

Thus, in case of positive correlation, the total safety stock may even increase sig-
nificantly by centralization. Nevertheless, centralization still remains advantageous
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Fig. 3 Total safety stock and total stock for correlated demand and for the SRL. Common data: Q =
34 [pallets], L = 2, tmax = 5 [days]

due to the reduced cycle stock, as can be seen from the total stock curves in Fig. 3.
Negative correlation, which is of less importance for demands at different locations,
leads to a monotonic increase of ST(N ) and the total stock curve exhibits a still more
distinct linear trend than for independent demand.

The SRL clearly overestimates the centralization effect for the safety stock in the
FTL area, as it exhibits, for decreasing N , a stronger decrease of ST(N ) than all cases
with ρ ≥ 0. However, for the total stock, where the centralization effect consists
mainly in the linear decrease of the cycle stock, the SRL underestimates this effect
compared with ρ = 0. In the LTL area, the comparison of the SRL with the other
cases shows the opposite relation.
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5 Gamma-distributed demand

As stated in Sect. 3, the assumption of normally distributed demand is questionable in
case of higher variance and smaller demand, as it occurs in particular in Data Set 3. In
this section, the lead-time demand is considered to be Gamma-distributed instead and
again uncorrelated. Given the demand d per unit of time and the standard deviation σ0
per unit and per unit of time as before, the parameters of the Gamma distribution are
chosen such that the mean μ = L d and the variance σ 2 = σ 2

0 L d of the lead-time
demand remain unchanged. Then, the parameters are (see Tempelmeier 2011, p. 341)
the shape parameter p = (

μ
σ
)2 = L d

σ 2
0
and the scale parameter λ = μ

σ 2 = 1
σ 2
0
.

Note that p
λ

= L d. Let FG(r, p, λ) denote the cdf of the corresponding Gamma
distribution. For a given reorder point r , the loss function for the Gamma distribution

RG(r) = L d [1 − FG(r, p + 1, λ)] − r [1 − FG(r, p, λ)]

represents the expected shortage at the end of a replenishment cycle. The expected
backorder per replenishment cycle equals the difference between the shortages at the
end and at the beginning of the cycle. The latter term, RG(r + q), cannot be neglected
here, as it amounts to up to 30 % of RG(r) for Data Set 3. The reorder point is
determined by the equation

RG(r) − RG(r + q) = (1 − β)q

which can be easily solved by the Excel solver, using the reorder points from the
normal distribution as starting values. The safety stock is the expected inventory at the
end of the replenishment cycle, S(d) = r − L d, and the cycle stock is C(d) = 1

2q.
Figure 4 shows the resulting stock functions. The comparison with Fig. 2 shows

that the safety stock, as expected, is somewhat higher than for normally distributed
demand, the difference being larger for smaller demand and for higher service level.
For Data Set 1, the relative difference of S(d) ranges from +33.6 % (d = 5) to
+8.7 % (d = 100) for Data Set 3 from +30 % (d = 5) to +2.5 % (d = 100). But
in all cases, the structure of the stock functions, as observed and analyzed in Sect. 3
for the normal distribution, remains the same. In particular, in the FTL case, the total
safety stock ST(N ) increases only slowly or is nearly constant, such as for Data Set
2. In the LTL case, the nearly linear increase of ST(N ) is steeper than for the normal
distribution, due to the larger difference for the smaller demands.

6 A periodic review model

In a continuous review model, as considered before, replenishments of the warehouse
can occur at any time on a continuous time axis. A more realistic assumption is that
the trucks arrive only once per day within a small time window. This situation can be
modeled by a (r, n q) policy: The inventory is reviewed at the beginning of every day.
When the inventory position s is less than or equal to the reorder point r , an order of
n q (n ≥ 1, integer) is placed such that s is raised into the interval (r, r+q]. As before,
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Fig. 4 Safety stock and cycle stock for continuous review and gamma distributed demand. Common data:
Q = 34 [pallets], L = 2, tmax = 5 [days]

we set q = min(Q, d tmax). The lead time L ≥ 0 is integer; the order placed on day
t arrives and is available on day t + L . The demand per day is normally distributed
with μ = d and σ = σ0

√
d.

The analysis of the (r, n q) policy is based on the fact that the inventory position
at the beginning of any day, after a potential order placement, is r + y, where the
overshoot y is uniformly distributed within (0, q]. Hence, the expected net inventory
at the beginning of any day, after a potential replenishment, is I0 = r + 1

2q − L d and
at the end of the day I1 = r + 1

2q − (L + 1) d. Hadley and Whitin (1963, Ch. 5-5)
show that for normally distributed demand the expected shortage at the beginning and
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at the end of the day are

I−
0 = 1

q
[u(r, L) − u(r + q, L)] and I−

1 = 1

q
[u(r, L + 1) − u(r + q, L + 1)],

where

u(v, t) = 1

2
σ 2
0 t d[(1 + x2)(1 − Φ(x)) − xϕ(x)] and x = x(v, t) = v − t d

σ0
√
t d

.

Thus, the reorder point r is determined by the equation

1

d q
[u(r, L + 1) − u(r + q, L + 1) − u(r, L) + u(r + q, L)] = β. (10)

The expected average net inventory is then

I = 1

2
(I0 + I1) = r − (L + 1)d + 1

2
(d + q).

How to split it into safety stock and cycle stock is not obvious for the (r, n q) policy
because the usual definition of the safety stock, the expected net inventory at the end
of a replenishment cycle, does not appear appropriate. Even for deterministic demand,
the stock at the end of the replenishment cycle does not vanish, due to the discrete
time axis and the discrete replenishment quantities n q. Therefore, the total stock is
split, somewhat arbitrarily, into

S(d) = r − (L + 1)d and C(d) = 1

2
(d + q).

Note that in the LTL case, CT(N ) = 1
2 (1 + tmax) D is constant like for continuous

review. Figure 5 shows the stock functions for the three data sets.
Alternatively, the reorder point r can be calculated by the following approxima-

tion: r must cover the demand during the lead time and one review period minus the
overshoot y, i.e. a variable z with mean μz = (L + 1)d − 1

2q and standard deviation

σz =
√

σ 2
0 (L + 1)d + q2

12 . With the safety factor k = R−1(
(1−β)d

σz
), the approximate

reorder point is

r ′ = k σz + (L + 1)d − 1

2
q. (11)

The approximation considers z as normally distributed, disregarding its true distrib-
ution, a convolution of a normal and a uniform distribution. Moreover, the shortage
at the beginning of a day is neglected. Nevertheless, the approximation (11) is very
close to the exact reorder point defined by (10). In all cases of the Data Sets 1 to 3,
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Fig. 5 Safety stock and cycle stock for periodic review and normally distributed demand. Common data:
Q = 34 [pallets], L = 2, tmax = 5 [days]

|r ′ − r | < 1 was observed, where r ranged from 33 to 608. Thus, the approximation

ST(N ) + CT(N )

= H

⎛
⎝ (1 − β)D

N
√

σ 2
0 (L + 1) DN + q2

12

⎞
⎠ N

√
σ 2
0 (L + 1)

D

N
+ q2

12
+ 1

2
D (12)

can be used for analyzing the stock function.
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The trend of the total stock (12) in the FTL case depends on the range of N . For
small N the first term under the square root dominates so that the total stock proceeds
like h2(N ) (see Appendix A.4) with a concave, nearly linear increase. For large N the
second term dominates so that the total stock proceeds like h3(N ) (see Appendix A.5)
with a convex increase. In the numerical analysis, the total stock indeed exhibits an
inflection point at N = 10 for Data Set 1 and at N = 15 for Data Set 2, whereas it is
concave in the whole FTL range for Data Set 3.

On the whole, the total stock function ST(N ) + CT(N ) exhibits a similar pattern
as for continuous review, but of course on a higher level.

7 Conclusions

The following conclusions can be drawn from the analysis presented in this paper:

1. The total safety stock that ensures a given fill rate in a system with N parallel
warehouses crucially depends on the relationship between the replenishment size
q and the demand d per warehouse. The Square Root Law for the safety stock is
only valid if q is proportional to

√
d, as is the case for the EOQ. But the EOQ

is usually much higher than an FTL and consequently the optimal replenishment
quantity is an FTL. For small demands, if an FTLwould cause too long cycle times,
the replenishment size has to be reduced to a smaller LTL quantity proportional
to d.

2. The total safety stock ST(N ) and the total cycle stockCT(N ) have to be considered
together when estimating the impact of reducing the number N of warehouses. For
continuous review (r ,q) control, ST(N ) andCT(N ) behave complementarily in the
two cases: In the FTL case ST(N ) is nearly constant andCT(N ) increases linearly,
in the LTL case ST(N ) increases stronger than

√
N and CT(N ) is constant. The

total stock ST(N )+CT(N ) exhibits a rather linear trend. These result which have
been derived analytically in case of normally distributed demand can as well be
observed for Gamma distributed demand. Also for periodic review (r, nq) control
the total stock behaves similarly.

3. In case of positive demand correlation, centralization may even increase the total
safety stock significantly. Nevertheless, centralization still remains advantageous
due to the reduced cycle stock.

4. The Square Root Law, in the FTL area, overestimates the effect of centralization
for the safety stock and underestimates it for the total stock because the latter effect
consists mainly in the linear decrease of the cycle stock.

The analysis can be easily extended to the case of unequal demand per warehouse,
using the stock function S(d). In the multi-product case, the FTL quantity has to be
allocated to the products by means of an appropriate rule. The extension to multi-
echelon distribution systems requires further research, combining concepts of multi-
echelon inventory control with those of centralization.
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Appendix

The analysis of the stock functions ST(N ) is based on the following approximation
to the normal loss integral G(k) ≈ R(k) which allows an analytic inversion H(x) =
G−1(x) ≈ R−1(x): Let

G(k) = 1√
2π

exp(−ak2 − bk) with parameters a, b > 0. (13)

The equation x = G(k) or k = G−1(x) is equivalent to the quadratic equation in k
ak2 + bk + ln(

√
2πx) = 0 with the solution

k = 1

2a

(
−b +

√
b2 − 4a(ln

√
2π + ln x)

)
.

Hence the inverse to G(k) is

H(x) = G−1(x) = −A +
√
B − 1

a
ln x with A = b

2a
, B = A2 − 1

a
ln

√
2π.

(14)

The parameters a, b are fitted so that, for any given k ∈ [0, 4], k′ = H(R(k)) coincides
with k as well as possible. This is done by minimizing the sum of squares ( k

′
k − 1)2

over k = 0.03, 0.1, 0.2, . . . , 3.9, 4.0 resulting in

a = 0.36121504, b = 1.22377537, A = 1.69397068, B = 0.32551597 (15)

The resulting accuracy of the approximation is G(0) = R(0) due to the definition
(13) and −0.0016 ≤ G(k) − R(k) ≤ 0.001 for 0 ≤ k ≤ 4, and −0.0171 ≤ H(x) −
R−1(x) ≤ 0.00227 for R(4) ≤ x ≤ R(0).

The function H(x) has the following properties:

A.1 H(x) > 0

Proof For 0 < x < 1√
2π

we have, using (14), H(x) = −A +
√
B − 1

a ln x >

−A +
√
B + 1

a ln
√
2π = −A + √

A2 = 0.

A.2

The function h1(x) = H(c xθ )x1−θ with constants c > 0 and 0 < θ < 1 is positive
for 0 < c xθ < 1√

2π
and attains a maximum. It is concave if θ ≤ 0.5.
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Proof h1(x) = (−A + w)x1−θ with w =
√
B − 1

a ln c − θ
a ln x > A due to A.1 and

d
dx w = − θ

2axw . The derivatives are

h′
1(x) = 1 − θ

xθ
(−A + w) − θ

2axθw
= 1

xθ

(
(1 − θ)(−A + w) − θ

2aw

)

and

h′′
1(x) = − θ

x1+θ

(
(1 − θ)(−A + w) − θ

2aw

)
+ 1

xθ

(−θ(1 − θ)

2axw
− θ2

4a2xw3

)

= − θ

x1+θ

(
(1 − θ)(−A + w) + 1 − 2θ

2aw
+ θ

4a2w3

)
. (16)

Therefore, h′′
1(x) < 0 for θ ≤ 0.5 and hence the concavity of h1(x).

h′
1(x) = 0 holds if (1 − θ)(−A + w) − θ

2aw
= 0 or w2 − Aw − θ

2a(1−θ)
= 0.

From the solution of the last equation, w0 = 1
2 (A +

√
A2 + 2θ

a(1−θ)
), the solution

of h′
1(x) = 0 is obtained, using the definition of w, as x0 = [ 1c exp(a(B − w2

0))]
1
θ .

This is a global maximum for 0 < θ ≤ 0.5. For 0.5 < θ < 1 it is at least a local
maximum because for w = w0

(1 − θ)(−A + w) + 1 − 2θ

2aw
> (1 − θ)(−A + w) − θ

2aw
= 0

and hence, according to (16), h′′
1(x0) < 0.

A.3

For θ = 0.5, h1(x) attains the maximum approximately at x0 ≈ 1
(6c)2

with the value

h(x0) ≈ 1
10c . In the indifference area [0.4x0, 2x0], the value of h1(x) is less than 10 %

below the maximum.

Proof For θ = 0.5, we have, using the parameter values (15), w0 = 1
2 (A +√

A2 + 2
a ) = 2.2967 and x0 = [ 1c exp(a(B − 5.2747))]2 = ( 0.1673c )2, and h1(x0) =

0.1673
c H(0.1673) = 0.1008

c .

Let y1 = c
√
0.4x0 = √

0.4 · 0.1673 = 0.1058, y2 = c
√
2x0 = √

2 · 0.1673 =
0.2366. Then, h1(0.4x0) = H(y1)

y1
c = 0.09142

c = 0.907h1(x0) and h1(2x0) =
H(y2)

y2
c = 0.09073

c = 0.9h1(xo). Due to the concavity of h1(x), this proves the
property of the indifference area.
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A.4

The function h2(x) = H( c√
x
)
√
x is positive and concave for x > 2πc2 and increases

asymptotically stronger than
√
x , but weaker than linearly.

Proof h2(x) = (−A + w)
√
x with w =

√
B − 1

a ln c + 1
2a ln x . h

′′
2(x) < 0 is proved

analogously to h′′
1(x) < 0 in A.2. For x → ∞, h2(x)√

x
= −A + w tends to infinity, but

h2(x)
x = 1√

x
(−A + w) tends to zero.

A.5

The function h3(x) = H( cx )x is positive and convex for x > c
√
2π and increases

asymptotically stronger than linearly.

Proof h′
3(x) = −A + w + 1

2aw
and h′′

3(x) = 1
2axw (1 − 1

2aw2 ) > 0, because 2aw2 >

2a A2 = 2.07. This proves the convexity of h3(x). The asymptotic trend is obvious.

References

Ballou RH (2005) Expressing inventory control policy in the turnover curve. J Bus Logist 26(2):143–164
Bretzke WR (2010) Logistische Netzwerke, 2nd edn. Springer, Berlin
Chopra S,Meindl P (2007) Supply chainmanagement: strategy, planning and operation. Pearson Education,

Upper Saddle River
Christopher M (2005) Logistics and supply chain management: creating value-adding networks, 3rd edn.

Prentice Hall Financial Times, Harlow
Croxton KL, Zinn W (2005) Inventory considerations in network design. J Bus Logist 26(1):149–168
Diks EB, de Kok AG, Lagodimos AG (1996) Multi-echelon systems: a service measure perspective. Eur J

Oper Res 95(2):241–263
Eppen G (1979) Effects of centralization on expected costs in a multi-location newsboy problem. Manag

Sci 25:498–501
Erlebacher SJ,Meller RD (2000) The interaction of location and inventory in designing distribution systems.

IIE Trans 32:155–166
Evers PT (1995) Expanding the square root law: an analysis of both safety and cycle stocks. Logist Transp

Rev 31(1):1–20
Evers PT, Beier FJ (1993) The portfolio effect and multiple consolidation points: a critical assessment of

the square root law. J Bus Logist 14(2):109–125
Evers PT, Beier FJ (1998) Operational aspects of inventory consolidation decision making. J Bus Logist

19(1):173–198
Fleischmann B (1993) Designing distribution systems with transport economies of scale. Eur J Oper Res

70:31–42
Fleischmann B, Kopfer H, Sürie C (2015) Transport planning for procurement and distribution. In: Stadtler

H, Kilger C, Meyr H (eds) Supply chain management and advanced planning. Springer, Berlin, pp
225–240

Hadley G, Whitin TM (1963) Analysis of inventory systems. Prentice-Hall, Englewood Cliffs
Hartel DH (2009) Consulting und Projektmanagement in Industrieunternehmen. Oldenbourg, München
MaisterDH (1976)Centralisation of inventories and the “SquareRoot Law”. Int J PhysDistrib 6(3):124–134
Miranda PA, Garrido RA (2004) Incorporating inventory control decisions into a strategic network design

model with stochastic demand. Transp Res Part E: Logist Transp Rev 40(3):183–207
Ozsen L, Coullard CR, Daskin MS (2008) Capacitated warehouse location model with risk pooling. Nav

Res Logist 55(4):295–312

123



www.manaraa.com

920 B. Fleischmann

Schwarz LB (1981) Physical distribution: the analysis of inventory and location. AIIE Trans 13(2):138–150
Shapiro JF, Wagner SN (2009) Strategic inventory optimization. J Bus Logist 30(2):161–173
Shen ZJM (2007) Integrated supply chain design models: a survey and future research directions. J Ind

Manag Optim 3(1):1–27
Snyder LV, Daskin MS, Teo CP (2007) The stochastic location model with risk pooling. Eur J Oper Res

179(3):1221–1238
Stulman A (1987) Benefits of centralized stocking for the multi-centre newsboy problem with first come,

first served allocation. J Oper Res Soc 38(9):827–832
Tempelmeier H (2011) Inventory management in supply networks: problems, models, solutions, 2nd edn.

Books on Demand, Norderstedt
van Houtum GJ, Inderfurth K, Zijm WHM (1996) Materials coordination in stochastic multi-echelon sys-

tems. Eur J Oper Res 95(1):1–23

123



www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


	c.291_2016_Article_442.pdf
	The impact of the number of parallel warehouses  on total inventory
	Abstract
	1 Introduction
	2 The square root law
	3 A continuous review model
	4 Correlated demand
	5 Gamma-distributed demand
	6 A periodic review model
	7 Conclusions
	Appendix
	A.1 H(x) > 0
	A.2
	A.3
	A.4
	A.5

	References





